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Abstract 
Covert channels can result in unauthorized information flows 
when exploited by malicious software.  To address this problem, 
we present a precise, formal definition for covert channels, which 
relies on control flow dependency tracing through program 
execution, and extends Dennings’ and subsequent classic work in 
secure information flow [9][40][30].  A formal security Domain 
Model (DM) for conducting static analysis of programs to identify 
covert channel vulnerabilities is described.  The DM is comprised 
of an Invariant Model, which defines the generic concepts of 
program state, information flow, and covert channel rules; and an 
Implementation Model, which specifies the behavior of a target 
program.  The DM is compiled from a representation of the 
program, written in a domain-specific Implementation Modeling 
Language (IML), and a specification of the security policy written 
in Alloy.  The Alloy Analyzer tool is used to perform static 
analysis of the DM to automatically detect potential covert 
channel vulnerabilities and security policy violations in the target 
program. 

Categories and Subject Descriptors   D.2.4 [Software 
Engineering]: Software/Program Verification – assertion 
checkers; D.3.1 [Programming Languages]: Formal definitions 
and theory – semantics, syntax; D.3.4 [Programming 
Languages]: Processors – compilers; D.4.6 [Operating 
Systems]: Security and Protection – access controls, information 
flow controls. 

General Terms   Design, Languages, Security, Verification. 

Keywords   Security domain model, static analysis, automated 
program verification, specification language, covert channel, 
dynamic slicing. 

1. Introduction 
Identification of exploitable covert channel vulnerabilities is vital 
in the development of systems intended to enforce mandatory 
access control policies, and is required for the successful 
evaluation of such systems at the highest levels of assurance 
[27][5].  This paper presents a precise, formal definition for 
various types of covert channels, which depends upon a 
representation of control flow dependencies, thus extending 
classic work in this area [9][40][30].  A security domain model is 
described for formally representing different types of covert 

channels, and for conducting static analysis1 of certain program 
implementations.  This model employs dynamic slicing 
techniques to analyze programs for the existence of access control 
flaws, where appropriate.  

Widely accepted evaluation standards [6][27][5] require that high 
assurance secure systems be designed, developed, verified and 
tested using rigorous processes and formal methods.  This 
evaluation process must include demonstration of correct 
correspondence between system representations at various levels 
of abstraction, e.g., security policy objectives, security 
specifications, and program implementation.  The Common 
Criteria for Information Technology Security Evaluation requires 
that systems at EAL-5 or higher2 undergo covert channel analysis 
to ensure that the system is capable of enforcing its security policy 
in terms of covert as well as overt interactions [5].   

Formal security models are often based on concepts of program 
secure state and state transitions.  High assurance evaluation 
standards [6][5] require a formal verification that the state 
transitions resulting from program execution preserve the security 
properties defined by a policy.  The approach described here 
analyzes programs for preservation of security properties through 
state transitions, and specifically for the existence of covert 
channel vulnerabilities.  This work advances the concepts of 
secure information flow in classic work by Denning and others 
[9][40], by describing automated techniques for covert channel 
static analysis. 

Previous work in developing our approach has demonstrated the 
ability to detect overt information flow security violations [33].  
The current work progresses toward verification of programs for 
the existence of covert channel security vulnerabilities, as well as 
overt flaws based on control flow dependencies.  Covert channels 
are categorized here as storage channels and timing channels.   

The Implementation Modeling Language (IML), the first novel 
element in this approach, is a language that supports basic 
information processing via assignment statements, conditional and 
loop statements, read/write statements, file random access, and 
access to a system clock.  Program implementations represented in 
IML are called base programs, and they provide a standardized 
notation for conducting static analysis of target programs for 
adherence to a security policy. 

The second novel element in this work is the definition of a 
security Domain Model (DM), represented as an Alloy [1][16] 
specification. The DM provides a framework for specifying 

                                                           
1 In this context, static analysis refers to analysis of program code 
without actual program execution. 
2 EAL-7 is the highest evaluation assurance level. 
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program state and state transitions, as well as security-related 
concepts such as security policy, information flow, access control, 
and covert channel vulnerabilities.  Because of decidability issues 
associated with modeling arithmetic operations, Alloy by design 
supports only a limited representation of integers and basic 
arithmetic operations.  Since the DM is implemented using Alloy, 
it is similarly limited. 

Our Security DM is comprised of an Invariant Model, which 
defines the generic concepts of program state, information flow, 
and security policy; and an Implementation Model, which 
specifies the behavior of the base program.  A specialized DM-
Compiler was developed to translate a base program in IML into 
an Implementation Model, and to integrate it with the Invariant 
Model to form a complete DM specification; the DM-Compiler 
thus has visibility of the security policy, as implemented in the 
Invariant Model.  The DM is verified using the Alloy Analyzer, 
which identifies execution paths where the security policy rules 
are violated. 

Whereas many previous security models capture information flow 
between objects and subjects, the DM does not explicitly define 
an object, but implements this concept through variables.  An 
access table records sensitivity labels for program variables, as a 
means of tracking information flow across state transitions.  These 
labels indicate the sensitivity of data stored within a variable, and 
may change over time as data flows through the system.  

The DM captures the concept of information flows with respect to 
a system subject for input to and output from an external device or 
random access file.  The subject is essentially the executor of the 
statement, and has a defined access label.  The policy rules define 
the legal information flows, based on the relationships between 
the subject label and the I/O source/destination variable label, e.g., 
in a Write_dev operation, a subject label must dominate a source 
variable label, in order for the variable to be successfully accessed 
for writing.  This requirement might seem counter to the BLP *-
property, however in our approach a Write_dev is modeled as a 
flow from a source variable to a target device, with the latter 
specified at the level of the subject label. 

Section 2 of this paper describes the IML syntax.  Section 3 
provides background discussion on covert channels, control flow 
dependencies, and dynamic program slicing.  Section 4 presents 
an overview of the DM methodology for modeling a security 
policy.  Sections 5 and 6 demonstrate analysis of several example 
base programs using the DM, and summarize our test results with 
these examples.  Sections 7 and 8 discuss related previous work, 
and planned future work in this research. 

2. Implementation Modeling Language (IML) 
The Implementation Modeling Language (IML) defines a simple 
domain-specific language that presents some of the basic 
capabilities and constructs, with respect to security, of high-level 
programming languages.  Our intent is that IML enables the 
specification of relatively simple programs written in some 
common programming language, such as Ada, Java, or C++.  
While future iterations of IML might handle other more advanced 
language features, e.g., concurrency, inheritance, etc., this initial 
language description was motivated by a requirement to represent 
essential security information flow properties in target program 
implementations, balanced by the desire to limit complexity 
during experimentation. 

2.1 Lexical Concepts 
A variable name is an identifier distinct from IML keywords and 
Alloy keywords.  No variable declarations are required. 

The only assumption about values stored in variables is that they 
can be compared for equality and inequality (<, =, >, <=, >= 
operators) with other variables, or with constants.  Variables can 
hold integer constants, but the value of a variable can be 
interpreted also as a time value (see GetClock below).  
Constants are represented by integers: -1, 0, 1, etc. 

Statements provided in the IML include capabilities for 
assignment to a variable, reading to and writing from a variable, 
accessing an I/O device’s flags and a system clock, and basic 
control structures.  Semicolons separate statements in IML. 

2.2 Assignment Statements 
Assignment statements propagate access labels from the right-
hand side to the left-hand side of the statement.  For the current 
model, constants have a Low access label by default. 

variable := variable; 
variable := constant; 

2.3 Device Input/Output Statements 
Read_dev and Write_dev statements abstract the input from 
and output to an external device at a specific access level. We 
make the simplifying assumption that there are two external 
devices: one High and one Low; the label (High or Low) indicates 
which device.  For a Read_dev statement, the variable is 
assigned the label of the device that is read from; for a 
Write_dev statement, source may be either a variable or a 
constant. 

Read_dev (label, variable); 
Write_dev (label, source); 

2.4 File Random Access Statements 
The IML abstracts the concept of random access to an indexed 
file, where (key, value) pairs are used to store and retrieve 
information in a finite-sized repository.  This conceptual 
repository, referred to as a direct file, can be thought of as a 
database or memory file and (for this model) is represented as a 
single-level store (i.e., there is no distinction between persistent 
and volatile memory).  

All subjects in the base program can access a single instance of 
the direct file, according to their access label.  Initially, all direct 
file slots have a Low access label, and can be written to by any 
subject.  Once a subject has stored a value into a keyed slot using 
the PutDirectFile statement, that slot retains the label of the 
subject.  Subsequently, another (or the same) subject may read 
from this direct file slot using the GetDirectFile statement, 
only if the subject’s label dominates that of the key slot.  A given 
key slot can be overwritten an unlimited number of times by a 
subject with a higher- or lower-labeled value, so the label of a 
given slot may change over time. 

The direct file has a limited number of keyed slots, all of which 
have empty keys and values at the start of program execution, and 
a given slot’s key value is determined when it is first assigned a 
key/value pair.  The direct file tracks the number of slots that have 
been assigned a key, zero at the start of execution and incremented 
by one whenever a key slot in the direct file is written to for the 



 

first time.  The direct file capacity equates to the number of key 
slots that can be allocated in the direct file.  

When a PutDirectFile is executed for a given key for the 
first time, an available key slot is allocated, the data is stored in 
the direct file, and a global Success flag is set to 1; otherwise, if no 
key slot is available, the Success flag is set to 0, and no data is 
stored.  When all available slots have been allocated, the direct 
file is considered filled, and a global Full flag is set to 1.  The 
Success and Full flags are global state variables maintained by the 
execution environment, and are internal resources that would not 
be directly accessible in a high level language.  Their values could 
be inferred, however, based on system errors seen by the user, and 
we abstract such system errors in the IML by allowing 
direct examination of the flags in a base program. 

The following statements are provided in the IML for storing and 
retrieving values to/from the direct file.  The label indicates the 
level of the subject performing the operation; the key and source 
may be either variables or constants: 

GetDirectFile (label, key, variable); 
PutDirectFile (label, key, source); 

2.5 GetClock Statement 
This statement stores the current clock value to a variable: 

GetClock (variable); 

We model only the time taken by file and external device 
accesses, i.e., during Read/Write_dev and 
Get/PutDirectFile operations.  These statements may cause 
the CPU, or some other resource, to be busy such that some action 
visible to another subject is delayed with respect to a reference 
clock (for simplicity, we model one time source – the system 
clock). 

The clock value can be compared with other constants and 
variables, using the Before operator: 

(var1 Before var2) 

2.6 Control Statements 
A conditional expression is constructed from variables, constants, 
flags, and operators =, >, <, >=, <=, Before, not, and, or.  A 
statement may be any statement or block of statements (a 
sequence of statements is enclosed by braces).  Two forms of 
control statements are provided: 

if condition then statement [else statement]; 

while condition do statement; 

In the if-then-else statement, the else block is optional.  
The while-do control statement repeats its body as long as the 
condition holds true. 

The following statement signifies termination of a base program: 

Stop; 

3. Background 
We now discuss here several computer security concepts relevant 
to this work. 

3.1 Covert Channels 
Covert channels use entities other than data objects as a way to 
transfer information between system subjects, specifically entities 
not intended for information transfer [20][17].  Such channels 
allow processes to take advantage of communication channels to 
transfer information in a manner that violates a security policy 
[11].  

An operating system may virtualize a shared physical resource so 
that each subject, or equivalence class of subjects, perceives that it 
has exclusive access to the resource.  A covert channel can result 
from the incomplete virtualization of a resource such that some 
attribute of the resource remains shared, indirectly.   

A common taxonomy of covert channels defines them as being 
either storage or timing channels [32].  For both storage and 
timing channels the sender and receiver (typically subjects) must 
have [17]: 

1. Indirect access to an attribute of a shared resource, 
which the sender can modify, and the receiver can view.  
For example, the shared resource is the CPU, and the 
attribute is its “busy” state; or the shared resource is the 
disk, and the attribute is the location of the disk arm, or 
the attribute is the “full” state.  

2. A means to initiate and synchronize their actions.  The 
sender and receiver need to know when to modify and 
observe the attribute, the importance of which increases 
when they wish to transmit a stream of data.  

In our analysis, we consider that the primary distinction between a 
covert storage channel and a covert timing channel is the means 
by which the receiver observes the change in the attribute: 

3. Storage – the receiver views an error message, or other 
information placed in its address space by the system.  
E.g., if the disk is full, the receiver is provided an error 
message to that effect. 

4. Timing – the receiver views changes to the relative 
timing of “legal” events.  For example, if the sender’s 
activity makes the CPU busy, the receiver’s request to 
execute an operation on the CPU will complete (event 
1) after the expected time of day occurs (event 2); or, 
turning to the disk arm attribute, depending on where 
the sender has left the arm (e.g., by reading a sector near 
the inner or outer edge of the disk), two disk sectors 
read by the receiver will occur in a different order 
(events 1 and 2). 

The attribute in question forms a point of interference [14] 
between the subjects.  To be the basis for an exploitable covert 
channel, the interference must also be contrary to the computer 
security policy – i.e., with a mandatory access control (MAC) 
policy, the sender’s security level must be higher than the 
receiver’s level (with respect to confidentiality) [38].  Thus, the 
determination of the potential covert channels in a system depends 
not only on the policy in place, but also on the implementation of 
that policy on a specific system [11], thus our approach here 
considers both the security policy and its implementation. 

The criteria listed above enable one or more bits of information to 
be passed for each interference event (i.e., log2(n) bits, where n is 
the number of possible states that the observer can differentiate in 
the shared resource, such as different amounts of delay).  



 

However, if the interference event can be repeated in a cycle, or 
loop, a stream of data can be transmitted through the channel, 
although additional synchronization between sender and receiver 
may be required to do so. 

The point of interference of a covert channel is considered an 
internal resource of the system, as it is not directly accessible to 
subjects, as are exported resources [27].  Note that if a Low 
subject can directly view the value of an exported resource (e.g., a 
variable) that has been modified by a High subject then an overt 
flaw, rather than a covert channel, results. 

3.2 Control Flow Dependency Flaws 
Covert storage channels based on control flow dependencies often 
involve the indirect use of internal resources, such as buffers or 
non-exported files in a program control decision, to pass 
information from High to Low [20][17][1][10].  In addition to this, 
our approach is capable of detecting overt flaws based on control 
flow dependencies. 

The approach here for discovering flaws based on control 
dependencies employs a dynamic slicing analysis.  To determine 
the existence of such a dependency within the program, the chain 
of statements preceding a value assignment is examined with 
respect to the access labels of the variables in these statements.  If 
the context of a previous statement includes variables that are 
higher than the destination, then there is an overt flaw. 

The code snippet below would not be classified as having a covert 
channel since internal attributes are not referenced, however it 
provides an illustration of a control flow dependency that 
constitutes an overt flaw.  In the example, a constant value is 
written out to a Low external device (s3), depending on the High 
value read into variable v1 (s1). 

(s1) Read_dev (High, v1); 
(s2) if v1 > 0 then  
(s3)    Write_dev (Low, 1); 

The Low value assignment depends on a High source (v1) in the 
if block (s2), therefore an implicit flow from v1 to the Low 
device exists [30].  

3.3 Dynamic Slicing 
Integral to certain covert channels is the notion of data or control 
dependency.  Slicing algorithms are used as a means of tracing 
such dependencies between variables and statements processed 
during program execution, traditionally for program debugging 
purposes [18].  Slicing algorithms generate an executable subset 
of a program, creating a subprogram whose behavior is the same 
as the original with respect to some variable.  They allow one to 
isolate the behavior of, and dependencies acting upon, that 
variable.   

Slicing algorithms are categorized as either dynamic or static, 
depending on whether they take into account dependencies 
derived during one particular program execution path (dynamic), 
or for all possible execution paths (static).  Dynamic slicing 
techniques generally analyze only the narrow portion of the code 
representing a single execution path. 

Since slicing techniques have been shown to be useful in tracking 
data and control dependencies, they can also provide a means of 
detecting potential overt flaws based on dependencies.  As an 
example, consider the following code snippet: 

(s1) if v3 > 17 then  
(s2)    v1 := 0; 
(s3) else if v4 = 5 then 
(s4)         v1 := 1; 
(s5)      else v1 := -1; 
(s6) v2 := v1; 

In the example, it is fairly clear that v2 depends on v1 (s6).  
Static slicing can show that v2 has a dependency on both v3 (s1) 
and v4 (s3), since there is a dependency from each of these to v1.  
With dynamic slicing, however, not all execution paths will result 
in the same control dependencies, e.g., when the conditional 
expression in (s1) evaluates to true, the final value of v2 depends 
on v3 but not on v4, since (s3) is never executed. 

The access labels of variables can be used to determine potential 
security violations, based on the dependencies between these 
variables.  For a finite number of paths within a given scope (see 
4.1.1), our tool performs static analysis of the DM by using 
dynamic slicing to discard previous states that could not have 
contributed to an overt flaw, thus a complete result is obtained 
without having to maintain a history of all preceding states. 

4. Security Domain Model Methodology 
An overview of the Security Domain Model (DM) approach to 
program security verification is depicted in Figure 1.  The DM 
includes the definition of program state and transitions between 
states, as well as security rules, specified as Alloy assertions, 
representing the generic policy a program must conform to.  The 
DM is composed of an invariant and a variable section, derived 
from the security rules and a target implementation, respectively.   

Manually
Extract

Manually
Extract

Page 1

Implementation
(Ada, Java, C++, …)

Security Policy
(natural language)

Base Program
(IML)

Invariant Model
(Alloy)

DM-Compiler
(IML -> Alloy)

Alloy Analyzer

Execution paths 
that violate security 

properties

Domain Model
(Alloy)

  - Implementation Model
  - Invariant Section

Figure 1. Domain model approach to system security 
verification. 



 

While there are numerous model checker tools currently available, 
we chose to use the Alloy specification language primarily 
because of its ability to represent program language abstractions 
simply and explore their semantics with a well-integrated analysis 
tool.  As Jackson [16] points out, referring to his approach as 
“lightweight formal methods,” Alloy models can be easily created 
and initially tested early in the development process, and then 
incrementally expanded.  He states that the goal of Alloy was to 
“obtain the benefits of traditional formal methods at lower cost, 
without requiring a big initial investment,” presumably in time 
and effort [16].  

As with traditional model checkers, Alloy deals with finite 
models, though it handles them very differently.  Model checkers 
typically build Kripke structures to represent the states and 
transitions of a program execution.  Such finite model structures 
have limits not easily adjusted by the user during analysis.  The 
Alloy Analyzer tool, however, affords the ability to easily increase 
the depth of analysis for models as they are developed and 
expanded.  For our approach, Alloy and its Analyzer provide an 
ideally suited tool for creating and analyzing target program 
abstractions. 

In our approach, a base program is an abstraction of a target 
program implementation, and is written in IML notation.  By 
analyzing a model of the program, rather than actual program 
code, security verification can focus on elements of information 
flow including covert channel analysis, e.g., I/O, access labels, 
direct file access, and timing (clock), while ignoring other 
program details not pertinent to such analysis.   

In the current prototype, translation of the base program from an 
implementation is a manual step.  Developing a separate compiler 
to translate a high-level language program to IML is a difficult 
task, beyond the scope of this work. The possibility must be 
considered that covert channels existing in the original program 
implementation may be lost in the IML representation, and for 
now we depend on the knowledge of the manual translator to 
avoid this problem. 

Security rules, written as Alloy assertions, are derived from the 
security policy.  Such policies are typically written in natural 
language, and extraction of security rules is a manual step in our 
approach.  As currently implemented, the DM defines security 
rules, which have as their basis the Bell & LaPadula security 
model [2], i.e., flows from High to Low secrecy levels are not 
allowed. 

After the base program and Invariant Model with security rules 
are defined, the DM-Compiler compiles the base program from 
IML into state transition predicates, written in Alloy notation, 
creating the DM Implementation Model.  The DM-Compiler 
combines this with the Invariant Model to complete the DM.  The 
approach uses the Alloy Analyzer tool [1] for automated 
verification of the security rules, defined in the DM as Alloy 
assertions, to find execution paths within the DM that might 
violate the security policy or create covert channels.  In essence, it 
creates an interpreter for the specific base program, modeled by 
the DM. 
4.1 Domain Model Structure 
The following provides an outline of the Domain Model structure. 

4.1.1 DM Invariant Model 
The Invariant Model specifies the conceptual framework of the 
DM with the Alloy specification language.  This section describes 
statement types and structure, program execution state, direct file 
structure, and clock signature. 

In the Alloy language, all atomic structures are modeled as sets 
and relations.  Sets are represented as unary relations; scalars are 
simply singleton sets.  A set or relation declaration can be 
constrained using several keywords indicating multiplicity: one 
restricts sets to exactly one instance of a type; while lone 
restricts them to either zero or one instance; and none refers to 
the empty set.  The all quantifier must hold for all instances of a 
type, and the disj quantifier specifies variables that are 
necessarily disjoint from one another.   

Alloy provides standard logical operators, e.g., negation (!), 
conjunction (&&), disjunction (||), implication (=>), and bi-
implication (<=>).  Pairs (type->type) represent binary 
relations, and ‘+’ is the set union operator.  The override operator 
‘++’ examines two sets of pairs and overwrites the pair in the first 
set with the second whenever the first elements of the pairs match.  
The ‘^’ operator represents transitive closure for binary relations.  

The signature (sig) construct in Alloy, roughly synonymous with 
the class declaration in object-oriented programming languages, 
defines a set of atoms (elements), and any relations between them.  
Signatures with the abstract qualifier cannot have their own 
instances, and are used only to derive other signatures.  For further 
details on the Alloy language, see [16]. 

The signatures below describe program State, the initial state, 
and structures for variables and values, which are extended in the 
DM-Compiler generated Implementation Model (discussed in 
Section 4.1.2).  The Dominates signature defines a partial 
ordering between access labels.  For simplicity, only Low and 
High access labels are defined here. 

abstract sig Variable{} 
abstract sig Value{} 
abstract sig AccessLabel{} 
one sig High, Low extends AccessLabel{} 
one sig Dominates { 
   ord: AccessLabel -> AccessLabel 
} 
{ ord = (High -> Low)  

} 

The Statement abstract signature captures a single instance of a 
given statement.  For I/O (Read_dev/Write_dev) and direct file 
access statements, the signature defines statement type, 
destination, source, key (for direct file only) and 
subject_label attributes.  The subject_label specifies 
the security label of the calling subject for a particular statement; 
this label represents the access label of the device, in the case of 
I/O statements.  For assignment statements, only source and 
destination attributes are defined.  For conditional 
statements, the source attribute defines the set of control 
variables used in an if-then-else or while-do statement.  
For GetClock statements, only the destination attribute is 
defined, while the Stop statement defines no attributes. 

 



 

abstract sig Statement{ 
   type:           Stmt_type, 
   destination:    lone Variable, 
   source:         set Variable + Value, 
   key:            lone (Variable + Value), 
   subject_label:  lone AccessLabel } 

The Stmt_type abstract signature is extended to include all 
statement types that can be used in a base program. 

abstract sig Stmt_type {} 
one sig Assign, Condition,  
   Read_dev, Write_dev,  
   PutDirectFile, GetDirectFile, 
   GetClock, Stop  
extends Stmt_type {} 

The DirectFile signature defines key/value pairs 
(keyContent) for each of its storage slots, and the current 
access label (keyLabel) for each key slot value.  The latter is 
used to track the label of the current value, to ensure valid flows 
during subsequent attempts to access that value, i.e., 
GetDirectFile statements.  The element last_written 
stores the label of the last subject that wrote to the direct file, and 
is used when checking for potential covert storage channels 
(discussed in detail later).  The signature also defines the direct 
file max_slots (set to 2 for modeling purposes); note that Alloy 
provides the predefined type Int to represent sets of integer 
atoms.  Also, full and success are used as internal resource 
system flags, as previously described in Section 2.4. 

sig DirectFile{ 
   keyContent:   Value -> lone Value, 
   keyLabel:     Value -> lone AccessLabel, 
   last_written: lone AccessLabel, 
   max_slots:    Int, 
   full:         (const0 + const1), 
   success:      (const0 + const1) 
} 
{ max_slots = 2 }  

The Clock signature provides an abstraction for program 
execution time.  The signature defines the concept of some event 
occurring at some time before another event (before relation), 
which enables testing for the relative timing of events during base 
program analysis.  In this implementation, ‘TO’ is defined as a 
Time ordering instance, using the Alloy library utility for 
ordering.  The nexts function returns a set of all next values in 
an ordering – in this case the next Time values after the one in 
question.  For example, the code below checks whether t2 is 
contained within the set of time values that occur after t1.  

sig Time{} 
one sig Clock{ 
   before:  Time->Time 
} 
{all disj t1, t2: Time | 
  (t1->t2) in before <=> t2 in TO/nexts[t1]} 

The State signature captures the current state of the system, and 
the next statement (stmt) to be executed. 

sig State{ 
   stmt:              Statement, 
   vars:    Variable-> one (Value + Time), 

   access_label: Variable-> one AccessLabel, 
   direct_file:       DirectFile, 
   current_clock:     Time, 
   prev_state:        lone State, 
   last_cond_checked: set State, 
   influenced_by:     Variable -> State } 

The State sig includes the current type of statement being 
executed, the current table of variable values, the access label for 
each value stored in vars (for information flow tracing), and a 
snapshot of the current direct file; the flags full and success 
are contained within the direct_file attribute.  This signature 
also includes the current_clock value, the previous state 
leading to the current state, and last_cond_checked, which 
identifies a set of conditionals within which the current statement 
may be nested, enabling dependencies from those conditionals to 
be propagated.   

The influenced_by attribute is used for tracking control flow 
dependencies, and is at the heart of the dynamic slicing algorithm 
used in this approach.  It stores, for each source variable in the 
current state, all of the previous states that have influenced that 
variable.  This attribute enables the Alloy Analyzer to narrow its 
focus in examining previous states, thus reducing the search space 
necessary in determining control dependencies. By storing 
variable/state pairs, we can enable the Analyzer to examine all 
variable access labels from previous influencing states.  

When analyzing a base program, the Alloy Analyzer performs an 
exhaustive search of all paths up to a defined length (the scope, 
specifying the size of the models considered).  In fact, it performs 
symbolic execution of all base program paths with length up to the 
given scope limit.  In our generated DM, the scope is generated 
heuristically, based on the total number of statements in the base 
program.  This ensures that all execution paths of that length or 
less will be scrutinized.  It is assumed that the Alloy small scope 
hypothesis, which states that most flaws in models can be revealed 
on small instances [16], holds for information flow tracing in our 
approach. 

The Invariant Model includes the definition of security rules that 
must be enforced by the DM security policy.  These rules are 
specified as Alloy assertions, and will be described further in 
Section 5. 

4.1.2 DM Implementation Model.  
The Implementation Model of the DM is automatically generated 
by the DM-Compiler from a base program, and specifies the base 
program’s semantics in terms of statement signatures and state 
transitions.  Example base programs, and their resultant compiled 
Alloy models, are presented in Section 5. 

From the base program, the DM-Compiler generates Variable 
and Value signatures.  The number and value of constants 
defined in the signature depend on the number and value of 
unique constants explicitly present in the base program (the 
constant 0 will always be added by default for initial variable 
values); similarly, the variable signatures reflect the variables used 
in the base program.  To represent the state space, additional 
constants may be needed to fill the intervals between explicitly 
defined constants.  The DM-Compiler defines an Alloy signature 
that establishes a simple less than relationship between the 
required constant values, thus enabling the base program to 
compare values for equality and inequality.  Some examples are: 



 

one sig x1 
   extends Variable {}  
one sig  const_minus_1, const0, 
   const1, const2, const3 
   extends Value {}  
 
one sig LT {  
   lt:  Value -> Value }  
{ lt = ^(  
      ( const_minus_1 -> const0)  
    + (  const0   -> const1)  
    + (  const1   -> const2)  
    + (  const2   -> const3) ) } 

The DM-Compiler compiles each base program statement into a 
separate Alloy signature, based on the type of statement and 
associated variables and constants used.  Elements of the 
Statement signature not needed for a particular statement type 
are not initialized.  The base program example below implies a 
signature sequence that would be compiled from an assignment 
statement (s2) nested within a conditional statement (s1): 
-- Base Program statements 

(s1) if ( x1 < 0 ) then  
(s2)   x2 := x1;  
(s3) Stop; 

-- DM-Compiler-generated Alloy signatures 

one sig s1 extends Statement {}  
{ type = Condition  
  source = x1  
  destination = none  
  key = none }  

one sig s2 extends Statement {}  
{ type = Assign  
  source = x1  
  destination = x2  
  key = none }  

one sig s3 extends Statement {}  
{ type = Stop  
  source = none  
  destination = none  
  key = none }  

From these statement signatures, the DM-Compiler generates a 
transition predicate representing the state transition trace for the 
base program execution.  The transition predicate captures the 
semantics of the base program by specifying all possible 
sequences of statement executions for the program.  It also 
implements dependency tracking within the execution path.  
Although we refer generally to the transition “predicate,” we 
actually represent this structure using an Alloy fact rather than a 
predicate (pred).  Although both define Alloy constraints, a 
pred only holds when invoked, while a fact is assumed to 
always hold. 

The remainder of this section shows a representation of the state 
transition predicate derived by the DM-Compiler for the base 
program above.  Note that for each statement, pre represents a 
state before its statement (stmt) has been executed, and post 
represents the state after statement execution.  

 

fact trans {  
 all post: State - InitialState | 
     some pre: State |  

For the conditional statement (s1), since no variable value 
assignments are made, the variable table, access labels, direct file 
(including system flags), clock time value, and influence_by 
table remain the same after execution: 

(pre.stmt = s1 && 
  (post.vars = pre.vars &&  
   post.access_label = pre.access_label &&  
   post.direct_file = pre.direct_file && 
   post.current_clock = pre.current_clock &&  
   post.influenced_by = pre.influenced_by &&  

The last_cond_checked attribute is calculated to include all 
previous states currently in last_cond_checked (excluding 
the current state, s1), plus the pre state itself, in order to set the 
context of statements within the conditional: 

   post.last_cond_checked = 
     {cond: pre.last_cond_checked | 
         cond.stmt != s1 } + pre && 

Based on the outcome of the conditional check, the next statement 
to execute is set to either the “then” branch (s2), or the “else” 
branch (s3) statement: 

   (((pre.vars[x1]-> const0) in LT.lt) 
        => post.stmt = s2 
      else post.stmt = s3) 
   ) 
   && post.prev_state = pre  
) ||  

In the assignment statement (s2), the access label and value for the 
target variable (x2) are set to those of the source variable (x1): 

(pre.stmt = s2 && 
  (post.vars = pre.vars 
     ++ (x2 -> pre.vars[x1]) && 
  post.access_label = pre.access_label 
     ++ (x2-> pre.access_label[x1]) &&  
  post.stmt = s3 && 

The direct file (including system flags), clock value, and 
last_cond_checked attribute all remain the same after 
execution of an assignment: 

   post.direct_file = pre.direct_file && 
   post.current_clock = pre.current_clock &&   
   post.last_cond_checked = 
     pre.last_cond_checked &&  

The influenced_by attribute is calculated based on the source 
variable dependencies.  Recall that influenced_by is declared 
within the State sig as the relation (Variable->State), which is a 
set of pairings from variables to states. Alloy treats sets and 
subsets the same when defining relations, thus the pairing of a 
variable to a set of states (Variable->{State}), shown below, 
denotes a set of pairings from that variable to each of the states 
({Variable->State}).  See Section 3.2.2 of [16] for a full 
discussion of Alloy’s treatment of sets as relations. 



 

In calculating influenced_by, first all previously recorded 
dependencies (other than those for x2, the destination variable) 
are included:  

   post.influenced_by =  
    {v: Variable, s: State |  
      (v -> s) in pre.influenced_by && 
       v != x2 }  

Second, dependencies for x1, the current assignment statement 
source variable, are added as dependencies for x2: 

   + (x2 -> pre.influenced_by [x1])  

Next, from the current set of states defined in 
last_cond_checked, those whose scope this assignment falls 
within are included.  This captures dependencies from any 
conditional within which the current statement may be nested; in 
this case base program statement (s1): 

   + (x2 -> {cond: pre.last_cond_checked | 
      cond.stmt = s1})  

Finally, when an assignment statement is nested within a 
conditional statement, dependencies from the source variables 
participating in the conditional must be included: 

   + (x2 -> State. 
      {cond: pre.last_cond_checked, 
       infl: cond.influenced_by 
       [cond.stmt.source] | cond.stmt = s1} 
     )  
   ) && post.prev_state = pre  
) || 

The transition predicate concludes with the Stop statement (s3). 
Since execution terminates when this point is reached there is no 
need to assign values for the resultant (i.e., post) state, other than 
setting the previous state for tracing continuity: 
 
(pre.stmt = s3  
    && post.prev_state = pre  
)} 

5. Examples of DM Analysis 
This section presents three examples of overt flaw and covert 
channel vulnerabilities, discoverable using the DM approach.  In 
each case, a rule for discovering the potential flaw or covert 
channel is defined as an Alloy assertion, and an example base 
program is presented to illustrate the problem.  Each example 
shows the transmission of one bit of information; a more complex 
example would need to involve such concepts as looping, 
synchronization, etc., to provide the covert channels with a stream 
of bits. 

The complete Alloy models for these and other examples can be 
found on our website at http://cisr.nps.edu/projects/sdm.html. 

5.1 Overt Flaw (Example 1) 
The first example illustrates an overt flaw based on a control flow 
dependency.  This example shows an exploitation scenario that 
culminates with an IML Write_dev operation, where the 
variables written to the external device have been influenced by 
values at a higher level than that of the device itself. 

The Alloy predicate below examines each execution state, and 
evaluates as true whenever the state (current) is the result of a 
Write_dev statement, and the value to be written out was 
influenced_by some previous state (pre) that had access to a 
variable with a higher access_label than that of current 
state, i.e., the flow from the previous State to the current State is 
from High to Low. 

pred dependency_flaw_found [current: State]{ 
  let stm = current.stmt, 
    pre = current.influenced_by[stm.source]| 
  (stm.type = Write_dev  &&  
  ((pre.access_label [pre.stmt.source]) 
     -> stm.subject_label) in Dominates.ord 
) } 

The following base program illustrates an example of this flaw.  
Initially, a High value is read into variable x1 (s1).  Based on the 
value of x1 (s2), new variable x2 is assigned either ‘0’ (s3), or ‘1’ 
(s4).  Variable x2 is then written to a Low device (s5). 

The violation occurs when x2 is written to a Low device, because 
its value has been potentially influenced by a High value, 
specifically x1 when it was accessed in (s2).   
(s1) Read_dev (High, x1); 
(s2) if x1 = 0 then  
(s3)    x2:= 0; 
(s4) else x2:= 1; 
(s5) Write_dev (Low, x2); 
(s6) Stop; 

The Alloy Analyzer detects this situation, and correctly reports an 
overt flaw by tracing the control flow through statements 
(s1)(s2)(s3)(s5). 

5.2 Storage Covert Channel (Example 2) 
The second scenario describes a classic covert storage channel 
[23] resulting from access to the direct file by a Low subject 
(using a PutDirectFile operation) after a High subject has 
caused it to become full (represented by a successful 
PutDirectFile that consumed the last open key slot).  The 
security predicate below defines this vulnerability by checking for 
states where a PutDirectFile is being attempted into a full 
direct file by a subject whose security level (subject_label) 
is dominated by that of the most recent subject to store a value to 
the direct file (last_written): 
pred storage_channel_found [current: State]{ 
  let stm = current.stmt | { 
    stm.type = PutDirectFile && 
    current.direct_file.full = const1 && 
    ((current.direct_file.last_written) 
      -> stm.subject_label) in Dominates.ord 
} } 

The following example base program illustrates a direct file 
storage channel.  For the example, we assume a direct file with a 
capacity of two records, initially empty.  The first part of the 
program shows events that occur representing a covert channel 
sender.  A High value is first read into variable x1 (s1).  Based on 
a check of the value of x1 (s2), constant value ‘2’ with a High 
access label is stored into the direct file at key slot 1 (s3), and then 
constant ‘0’ with a High access label is stored into the direct file at 



 

key slot 2 (s4); these statements result in the internal full flag 
being set. 

(s1) Read_dev (High, x1);  
(s2) if x1 = 1 then { 
(s3)   PutDirectFile (High, 1, 2); 
(s4)   PutDirectFile (High, 2, 0); } 

The latter part of the program represents statements executed by a 
Low covert channel receiver.  When the Low subject attempts to 
store a value into direct file key slot 3 (s5), the system issues a 
failure indication since the direct file is full.  The IML abstracts 
this system failure by allowing direct examination of the system  
full flag by the Low subject (s6).  To exploit the storage channel, 
Low writes a constant ‘1’ or a ‘0’ to an external device (s7 & s8), 
depending on the result. 

(s5) PutDirectFile (Low, 3, 1);  
(s6) if full = 1 then 
(s7)   Write_dev (Low, 1); 
(s8) else Write_dev (Low, 0); 
(s9) Stop; 

The nexus of this covert channel is that High can write to the 
internal resource full (indirectly), and Low can observe it.  
Because a higher labeled subject caused the direct file to become 
full, the Alloy Analyzer detects and reports this violation, tracing 
the flow of execution through statements (s1)(s2)(s3)(s4)(s5).   

5.3 Timing Covert Channel (Example 3) 
The third scenario describes a covert timing channel that occurs 
when a Low subject executes two GetClock statements (gc1 & 
gc2), and between them a High subject prevents the Low subject 
from executing, through execution of a Read_dev/Write_dev or 
direct file operation (rw state in the text).  Thus, when the Low 
subject next runs, it can examine the clock to detect this 
interference with its access to the CPU; these channels are thus 
often called CPU channels.  The Alloy assertion below will detect 
this potential covert timing channel, which utilizes the system 
Clock. 

pred timing_channel_found [gc2: State]{ 
  some disj rw, gc1: State | { 
   gc2 -> rw in State_order.st_after && 
   rw -> gc1 in State_order.st_after &&  
   gc1.stmt.type = GetClock &&  
   gc2.stmt.type = GetClock &&  
   rw.stmt.type in  
     (Read_dev + Write_dev + 
      PutDirectFile + GetDirectFile) && 
   gc1.stmt.subject_label = 
      gc2.stmt.subject_label && 
   (rw.stmt.subject_label 
      -> gc2.stmt.subject_label) 
      in Dominates.ord  }  

} 

The base program below illustrates this timing channel.  A High 
value is initially read into variable x1 (s1).  A Low subject then 
stores the current clock value in t1 (s2).  Based on a check of x1 
(s3), its value is stored into the direct file at key slot 1 (s4).  The 
Low subject again examines the clock, and stores its value into t2 
(s5).   

 

(s1) Read_dev (High, x1); 
(s2) GetClock (Low, t1); 
(s3) if x1 < 0 then 
(s4)   PutDirectFile (High, 1, x1); 
(s5) GetClock(Low, t2); 

At this point a timing channel has occurred, and the Alloy 
Analyzer detects the violation, tracing execution flow through 
statements (s1)(s2)(s3)(s4)(s5).  The crux of this covert channel is 
that a Low subject, the covert channel receiver, has been allowed 
to observe (by examining the clock) a change in some internal 
resource (the CPU busy state), which was indirectly affected by 
the actions of a High subject, the covert channel sender.  The 
remaining statements illustrate how the Low subject compares the 
two clock values (s6) to see whether the High subject has 
interfered with it through performance of some operation, and 
writes either a ‘1’ or ‘0’ accordingly (s7 & s8). 

(s6) if t1 Before t2 then 
(s7)   Write_dev (Low, 1); 
(s8) else Write_dev (Low, 0); 
(s9) Stop; 

6. Testing Results 
The base program examples presented above were evaluated using 
Alloy Analyzer 4.0 build RC17, running under Mac OS X™ 
10.5.1 on a 2.4 GHz Intel Core 2 Duo processor, with 2 GB of 
memory.  In test runs, the Alloy Analyzer successfully found valid 
counterexamples for violations of each security rule assertion, i.e., 
an existing overt flaw or covert channel was detected in each case.  
Test run times, in ms, were as follows; total time (time to generate 
model, time to find counterexample): 

• Example 1 (scope = 7): 688 (640, 48) 
• Example 2 (scope = 10): 2284 (1953, 331) 
• Example 3 (scope = 10): 5891 (2771, 3120) 

7. Related Work 
Previous research in modeling secure information flow and access 
control, and in covert channel analysis is described below.  We 
have extended previous work by integrating a language for 
formally specifying an implementation with a framework for 
expressing security policies, particularly with respect to covert 
channel rules and control dependency flaws. 

Classic work on secure information flow [8][9] provides a 
foundation for this research, including the notion of partial 
ordering of security classes based on the dominance relationship, 
the idea of labeling state variables to track such flows, as a way to 
certify a program.  

Other approaches do not distinguish between classes of covert 
channels, or between covert and overt flows for that matter.  
These approaches rely on the concept of noninterference, which 
states that the actions of one subject can have no effect on the 
output of a lower subject in a system.  Goguen & Meseguer [14] 
described a model wherein security policies are defined in terms 
of only noninterference assertions, rather than by the combination 
of access control and covert channel restrictions.  Their ideas were 
further expanded by Haigh & Young [15].  Noninterference with 
respect to security properties, however, is considered to be limited 
by the refinement paradox, i.e., a system’s abstract security 
properties for information flow cannot be guaranteed to be 



 

preserved through refinement to concrete implementation 
[24][29][25].   

Graham-Cumming & Sanders [12] used the unwinding theorem 
[13][15] to describe refinement of a system such that 
noninterference between users in an abstract specification of the 
system could be preserved through more concrete representations 
of the system, however the results of this work were limited to 
noninterference, and were not extensible to more general security 
policies or confidentiality rules, such as those for covert channels.  
Enforcement of a range of security properties is possible in our 
approach through the use of security assertions that are explicitly 
checked during Alloy program analysis.  The semantics of 
information flow are represented in the DM by the definition of 
access label ordering, and through the compiler-generated 
transition predicate, unique to a particular base program. 

Volpano et al [40] furthered the language-based flow analysis 
work by defining a linguistic type system for secure flow, and 
rigorously proving the soundness of the core language with 
respect to noninterference.  Well-typed programs are then 
guaranteed to be noninterfering – and thus secure by this 
definition – which was the basis for much related research, 
summarized by Sabelfeld & Myers in their survey on language-
based information flow systems [30].   

Other work in using sound type systems for secure information 
flow has focused on areas such as: encryption and decryption of 
information, where flows from plaintext (High) information to 
ciphertext (Low) information must be addressed in light of 
noninterference rules that would seem to prevent such interaction 
[21][35]; probabilistic noninterference, where probability 
distributions are used to determine a likelihood of noninterference 
from High to Low variables, primarily for multi-threaded 
processes where scheduling is nondeterministic [39][31][36]; and 
type inference, in which the flow of information is automatically 
determined based on semantic analysis [34][7].  Eventually, Smith 
& Thober [37] enhanced the linguistic model of secure 
information flow such that sensitivity labels need be assigned only 
at I/O boundaries, while the labels of variables and constants, as 
well as data information flow through a program’s execution, are 
automatically derived relative to the I/O (device) labels.   

Our DM-Compiler similarly tracks the flow of data based on the 
input device label with no requirement to annotate the code in any 
other way.  Our work differs from the linguistic type system 
approach in that, rather than constructing a type-safe language 
with which to write secure programs, we apply abstract 
interpretation to the analysis of programs in order to detect 
potential problems and otherwise demonstrate their security with 
respect to select security properties.  Our approach is based on 
exhaustive information flow tracing of all execution paths in a 
program, to a certain length (determined by the model scope of 
Alloy).  This tracing is applied for both overt and covert channel 
static analysis, using dynamic slicing techniques where 
appropriate such that read-up, as well as violations of 
noninterference, are detected [41].  Additionally, we provide a 
compiler to generate a formal specification of a program.  
Although it yet lacks a formal soundness proof, the DM-Compiler 
enables generation of formal logic that can be automatically 
analyzed (using the DM) for secure information flows. 

Other covert channel research has also focused on information 
flow analysis, using the principles of Kemmerer’s SRM [17].  For 

example, in one approach, covert channel analysis is based on 
observing the change in entropy, or uncertainty, of process 
variables that occurs when covert channels exist [10].  The 
concept of “network” covert channel analysis introduced detection 
methods based on in-depth IP packet analysis as a way to 
differentiate covert channels from legitimate network traffic 
[28][3].  Approaches such as these could potentially be 
incorporated into the DM security rule assertions, as methods for 
detecting covert channels in base programs within this domain. 

Previous work in implementing dynamic slicing algorithms has 
included development of a tool for finding privacy violations in 
networked environments, targeting spyware in networked 
applications [19].  The approach uses dynamic slicing techniques 
to trace program execution, to search for data dependencies that 
might illuminate privacy violations.  When such dependencies are 
found, they are specified using an event description language to 
capture event parameters, values, etc.  Their goal is to use these 
parameterized events as abstract inputs for an event sequence 
language, as a means of generating a security policy.  Based on 
the observed privacy violations, a policy is written that will 
prevent the specific events that caused the violations.  Our 
suggested approach differs in its goal of analyzing a target 
program for adherence to a specific policy, as opposed to some 
generated policy. 

The Alloy language has been used to model security requirements 
for secure communications [4], where predicates were specified 
for secure message confidentiality, integrity, authenticity and non-
repudiation, as well as numerous “obstacles to security”, e.g., 
eavesdropping or spoofing.  The work was successful in designing 
a general, reusable model for communication security properties, 
and differs significantly from our research presented here, which 
examines program implementations for security.   

8. Discussion and Future Work 
This paper has presented ongoing research to develop a formal 
domain model for analyzing programs for exploitable covert 
channel vulnerabilities.  The approach defines a formal Security 
Domain Model (DM) that facilitates detection of covert channels, 
independent of program implementation.  This approach can also 
be defined to specify security policies in a generic way, beyond 
covert channels [33].  Although encoding and checking static 
program semantics and properties is not in itself revolutionary, 
this work is evolutionary in extending previous work in the area of 
information flow tracking based on a precise, formal definition for 
overt information flaws and covert channels.  Our model provides 
a means of conducting automated static analysis of a program 
implementation within a finite scope of execution paths.  Flow 
control dependencies and related overt flaws are analyzed using 
dynamic slicing techniques.  This paper has shown the feasibility 
of this approach on a specific set of examples for which the Alloy 
Analyzer, within a finite scope, ensures that false negatives and 
false positives are eliminated.  

Because the scope of analysis is directly related to the size of the 
base program being analyzed, a key problem with this approach 
lies in the limitation on the size of the possible search space due to 
the potential for state explosion in the analyzer tool.  Extension of 
the analyzer tool could expand the scope, and enable analysis of 
larger programs. 

Future work will focus on formally analyzing the semantics of the 
IML and DM-Compiler to ensure that the artifacts of each (e.g., 



 

the base program and DM Implementation Model) are accurate 
refinements of the original target implementation.  As pointed out 
in [30], information flow analysis should take place “as close to 
the executed code as possible.”  Analysis of a compiled 
abstraction of the execution code creates a requirement for 
trustworthiness in the compiler, as well as in the process of 
deriving an abstraction of the target code itself. 

The DM can be expanded to enable the notion of parameterized 
security policies, i.e., the security rules defined by a policy would 
become part of the DM Implementation Model (as opposed to the 
current Invariant Model).  This would enable an evaluator to 
analyze a base program for consistency with a variety of security 
policies, the policies themselves being input parameters to the 
DM, as is done in a separation kernel [27].  Banking provides an 
example of this concept, where there is a need to maintain secrecy 
of data during execution of some applications (e.g. programs that 
manipulate customer personal data), while a need exists to 
maintain integrity in others (e.g. programs that execute money 
transactions).  A DM with parameterized policies could analyze 
either of these categories of programs for adherence to the 
appropriate policy to be enforced.  Additionally, the DM could be 
extended to provide generalization of security rule predicates, 
enabling detection of additional covert channels without the need 
for modification of the Invariant Model. 

Another advance could be expansion of the DM to enable support 
for dynamic security policies [23].  This concept would allow the 
DM to support multiple polices in existence during program 
execution, with the ability of a system to adapt different policies 
based on a dynamically changing security environment [26]. 
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